CS252 S05

CMSC 411
Computer Systems Architecture
Lecture 9
Instruction Level Parallelism 3
(Static & Dynamic Branch Prediction)

Static Branch Prediction

« Previously scheduled code around delayed branch
« To reorder code around branches

— Need to predict branch statically during compile
« Simplest scheme is to predict a branch as taken

— Average misprediction = untaken branch frequency = 34% SPEC92

25%

20%

15%

More accurate
scheme predicts
branches using profile
information collected
from earlier runs, and
modify prediction
based on last run:

10%

Misprediction Rate

5%

cccc Integer. Floating Point

Dynamic Branch Prediction

» Performance = f(accuracy, cost of misprediction)

+ Branch History Table (BHT): table of 1-bit values
indexed by lower bits of PC address index

—Says whether or not branch taken last time

—No address check (may refer to wrong branch)
NT
T

T
Predict m _NT | @ Predict
Taken T Not Taken

» Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 loop iterations before exit):

—End of loop, when it exits instead of looping as before

—First time through loop on next time through code,
when it predicts exit instead of looping

Outline

o ILP

Compiler techniques to increase ILP

Loop Unrolling

Static Branch Prediction

Dynamic Branch Prediction

Overcoming Data Hazards with Dynamic Scheduling
Tomasulo Algorithm

Conclusion

Dynamic Branch Prediction

» Why does prediction work?
—Underlying algorithm has regularities
—Data that is being operated on has regularities

—Instruction sequence has redundancies that are
artifacts of way that humans/compilers think about
problems

« Is dynamic branch prediction better than static
branch prediction?

—Seems to be

—There are a small number of important branches
in programs that have dynamic behavior

Dynamic Branch Prediction

« Solution: 2-bit prediction scheme where predictor
changes prediction only if it mispredicts {wice in a row

T H&P Figure 2.4

NT
Predict Taken @ = “ Predict Taken

Predic d) - NPreriﬁt
ot Taken U ot Taken

« Red: stop, not taken NT

« Green: go, taken
« Adds hysteresis to decision making process

CS252 S05

BHT Accuracy Correlated Branch Prediction

» Mispredict because either: Idea — record m most recently executed branches as
—Wrong guess for that branch taken or not taken, and use that pattern to select the
99 proper n-bit branch history table

—Got branch history of wrong branch when indexing In general, (m,n) predictor means record last m

into the table

o g 1t H&PFigure25 branches to select between 2™ history tables, each
+ 4096 . o with n-bit counters
entry H ol —Thus, old 2-bit BHT is a (0,2) predictor
table: 2 o S i ST) — Global Branch History: m-bit shift register keeping
g g; g s [-FF----- T/NT status of last m branches.
g e *H* fH N B T —Each entry in table has 2™ n-bit predictors |if(aa==2)
2% . =] |- % 2 . . -0:
o o e e v i Y o= « Also known as 2-level adaptive predictor a=0:
N if (bb == 2)
SPEC89 QQQ‘&\ Q&"o § TFFS S S bb = 0;
& & p
Integer Floating Poi:l Depends on 2 previous branches! —> [if(@a!=bb){
Correlating Branches Correlated Branch Prediction

» Possible choices
(2,2) predictor w/ —Local history + branch address
—Global branch history + branch address

— Global branch history only (no branch address)
» Ignores branch instruction

— Behavior of recent
branches selects
between four
predictions of next
branch, updating just
that prediction

Branch | Tndex into Predictor —_
Or, 4 addr bits + 2 history address
bits give us 6-bit index / T

into 26 = 64 predictors, =

each having two bits 2 I @ .
128 total bits. D

Global branch history

branch history branch history
Calculations Accuracy of Different Schemes
* 4096-entry (0,2). predictor (i.e., 2-bit BHT) ” H&P Figure 2.7
—4k x 2 = 8K bits o 4096 Entries 2-bit BHT
—4k = 212 — 12 address bits 6% Unlimited Entries 2-bit BHT
14% 1024 Entries (2,2) BHT

» How to use the same # bits w/ a (2,2) predictor?
— 8k bits w/ 2-bit BHT means 4k BHTs
—the (2, 2) implies an entry has four BHTs
— 1k entries, i.e. a (2,2) predictor w/ 1024 entries

Frequency of Mispredictions

%

spice
fpppp.

g
expresso
eqntott

matrix300
tomeaty
doducd

[="4.096 entries: 2-bits per entry @ Unlimited entries: 2-bit/entry ® 1,024 entries (2.2)]

CS252 S05

Tournament Predictors

» Multilevel branch predictor

» Use n-bit saturating counter to choose between
predictors

» Usually choice is

between global
and local predictors m @

(Use predictor 1 Use predicior2.
h 0 b 3
T on n Ton
o B on P R
¢ Use predictor 2

[
\ 1 AR 2)

'y T
Predictor 1 correct —— o0, 11
Predictor 2 incorrect. R —

©2003 Elsevier Science (USA). All rights reserved.

LTI y—— 3

Tournament Predictor : DEC Alpha 21264

» Tournament predictor using 4K 2-bit counters
8K indexed by local branch address. Chooses between:

+ Global predictor
12 —4K entries indexed by history of last 12 branches
(22 = 4K)
8K —Each entry is a standard 2-bit predictor
* Local predictor

—Local history table: 1K 10-bit entries recording last
10 branches, index by branch address

—The pattern of the last 10 occurrences of that
3K particular branch used to index table of 1K entries
with 3-bit saturating counters

10K

Total size of predictor = 8K + 8K + 10K + 3K = 29K

(0,2) Predictor

« Branches in loop I
B1: BNEZ ... // branch 1 NT
B2: BNEZ ... // branch 2 Predict Taken T Predict Taken
+ Branch results Predict 8 ':_T Predict
B1: TNT,TNT,T Not Taken Not Taken
B2: T,T,T,TNT NT
Branch 1 Branch 2
lteration | Predictor | Prediction | Action Predictor | Prediction | Action
1 0 NT T 0 NT T
2 1 NT NT 1 NT T
3 0 NT T 3 T T
4 1 NT NT 3 T T
5 0 NT T 3 T NT
Exit loop | 1 2

N-bit Saturating Counter
TN TN

T T T
C D NT
N ot taken not taken taken taken NT = not taken
0/ \p A N2 N3

« Used to choose between predictors X & Y
« N-bit counter value between 0 and 2"-1
Counter operations
—Increment by 1 (up to 2"-1)
» If X is correct & Y is incorrect
—Decrement by 1 (down to 0)
» If Y is correct & X is incorrect
Choose predictor X if counter > 21, Y otherwise
Can be used as predictor (X = taken, Y = not taken)

(0,1) Predictor

« Branches in loop

B1: BNEZ ... // branch 1 1 NT
B2:BNEZ ... //branch2 Predict ﬁ_.NT Predict
+ Branch results Taken T Not Taken
B1: TNT,T,NT, T
B2: T,T,T,TNT
Branch 1 Branch 2
lteration | Predictor | Prediction | Action Predictor | Prediction | Action
1 0/~ NT T 0 NT T
2 1 1T NT 1 T T
3 0 NT T 1 T T
4 1 T NT 1 T T
5 0 NT T 1 T NT
Exit loop | 1 0

Prediction based on state of predictor

(0,2) Predictor w/ Saturating Counter

+ Branches in loop

B1:BNEZ ... // branch 1
TN N T

B2: BNEZ ... // branch 2 i i T
T
+ Branch results G :)
0 NT 1 NT 2 NT 3

B1: T,NT,T,NT, T

B2: T,T,T,TNT
Branch 1 Branch 2

lteration | Predictor | Prediction | Action Predictor | Prediction | Action
1 0 NT T 0 NT T
2 1 NT NT 1 NT T
3 0 NT T 2 T T
4 1 NT NT 3 T T
5 0 NT T 3 T NT
Exit loop | 1 2

(1,1) Predictor w/ Global History + Branch

+ Branches in loop

B1: BNEZ ... // branch 1 NT
B2:BNEZ...//branch2 Predict ﬁﬂ. Predict
+ Branch results Taken T Not Taken
BUTNTTNTT po/p1 - Last global branch
B2: T,T,T,TNT Not taken / Taken
Brarnch 1 Branch 2
lteration | Predictor Breﬂftion Actiop~Predictor~Prediction | Action
1 212 T 272 T
2 212/ NT 217 T
3 ?/2 T 272 T
4 2/2 NT 2/? T
5 2/2 T 272 NT
Exit loop | ?/? 2/?

Choose predictor based on last global branch action

(1,1) Predictor w/ Local History + Branch

« Branches in loop

B1: BNEZ ... // branch 1 1 NT
B2:BNEZ...//branch2 Predict ELG Predict
+ Branch results Taken T Not Taken

BI: TNT,TNT,T PO/ P1 — Last local branch

B2: T,T,T,TNT Not taken / Taken
Branch 1 Branch 2

Iteration | Predictor | Prediction | Action Predictor | Prediction | Action
1 2/? T 2/? T
2 2/2 2 NT 2/28 fF——T1
3 W AT 2/28 _4F——T
4 ?/2 5——INT ?2/28 _A—7
5 247 T 2/2% NT
Exit loop | ?/? ?/?

Choose predictor based on last local branch action

(2,1) Global Predictor (no Branch Addr)

« Branches in loop

(1,1) Predictor w/ Global History + Branch

+ Branches in loop

B1: BNEZ ... // branch 1 NT
B2:BNEZ...//branch2 Predict ﬁ_.NT Predict
+ Branch results Taken T Not Taken
BUTNTTNTT po/p1 - Last global branch
B2: T.T.T,TNT Not taken / Taken
Branch 1 Branch 2
lteration | Predictor | Prediction | Action Predictor | Prediction | Action
1 0/0 NT T 0/0 NT T
2 1/0 NT NT 0/1 NT T
3 1/0 NT T 1/1 T T
4 1/1 T NT 1/1 T T
5 1/0 NT T 1/1 T NT
Exit loop | 1/1 1/0

(1,1) Predictor w/ Local History + Branch

« Branches in loop

B1: BNEZ ... // branch 1 1 NT
B2:BNEZ...//branch2 Predict ﬁ_.NT a Predict
+ Branch results Taken T Not Taken

BI: TNT,TNT,T PO/ P1 — Last local branch

B2: T,T,T,TNT Not taken / Taken
Branch 1 Branch 2

lteration | Predictor | Prediction | Action Predictor | Prediction | Action
1 0/0 NT T 0/0 NT T
2 1/0 NT NT 1/0 NT T
3 1/0 T T 1/1 T T
4 1/0 NT NT 1/1 T T
5 1/0 T T 1/1 T NT
Exitloop |1/0 1/0

(2,1) Global Predictor (no Branch Addr)

+ Branches in loop

B1:BNEZ ... // branch 1 1 NT
B2:BNEZ...//branch2 Predict maa—NT Predict
+ Branch results Taken T Not Taken

B1: TNT,TNT,T
B2: TTTTNT PO/P1/P2/P3 - History=00/01/10/11

B1: BNEZ ... // branch 1 1 NT
B2:BNEZ ...//branch2 Predict maaNT, Predict
« Branch results Taken T B Not Taken
B1: TNTTNT.T pg/p1/p2/P3 - History=00/01/10/11
B2 TT.T.TNT Branch actions stored in Global History
Branch 1 Bram\
lter\| History | Predictor | Prediction ion [Hjstory | Predictor | Prediction) Action
1 07 Tv® | samea |T 01 ekl T
2 [11 -~ [77%2 |Predictors|NT__|10 7722 T
3 |o1 %2217 T 17712 T
4 |11 —7TnY? NT |10~ [7T%2? T
5 |01 72217 T 1| 771%2 NT
Exit [10

Branch 1 Branch 2
lter | History | Predictor | Prediction | Action | History | Predictor | Prediction | Action
1 00 0/0/0/0 |NT T 01 1/0/0/0 |NT T
2 (1 1/1/0/0 | NT NT 10 1/1/0/0 |NT T
3 |01 1/1/1/0 |T T 11 1/1/1/0 |NT T
4 |11 1111 |T NT 10 11/1/0 | T T
5 |01 1/1/1/0 |T T 11 1/1/1/0 |NT NT
Exit | 10 1/1/1/0

History based on last 2 global branch actions; chose predictor based on history

CS252 S05

CS252 S05

(2,2) Global Predictor (no Branch Addr)

+ Branches in loop eredict Tak NT orediet Tak
B1:BNEZ ... //branch 1 FredctTeen® redict Taken
B2: BNEZ ... // branch 2 Predict Predict

Not Taken T Not Taken

+ Branch results
B1: T,NT,T,NT,T NT

B2: T,T,T,TNT PO/ P1/P2/P3 — History=00/01/10/ 11
Branch 1 Branch 2

lter | History | Predictor | Prediction | Action | History | Predictor | Prediction | Action
1 00 0/0/0/0 |NT T 01 1/0/0/0 |NT T
2 |1 1/1/0/0 |NT NT 10 1/1/0/0 |NT T
3 |01 1/1/1/0 |NT T 11 1/3/1/0 |NT T
4 |11 1/3/1/1 |NT NT 10 1/3/1/0 |NT T
5 |01 1/3/3/0 |T T 11 1/3/3/0 |NT NT
Exit | 10 1/3/3/0

Tournament Predictor /., Y

+ 2-bit tournament predictor o) U
A I

— Indexed by branch address N o ; -

+ Chooses between two predictors ~ _*7=")yt =5)

1. (2,2) Global Predictor)
2. (1,1) Predictor w/ Local History

Branch 1 Branch 2
Iter | 2,2 | 1,1 | Predictor | Predict | Action | 2,2 | 1,1 | Predictor | Predict | Action
1 NT |NT 0 NT T NT |NT 0 NT T
2 NT |NT 0 NT NT NT |NT 0 NT T
3 NT | T 0 NT T NT | T 0 NT T
4 NT |NT 1 NT NT NT | T 1 NT T
5 T |T 1 T T NT | T 2 T NT
Exit 1 1

Pentium 4 Misprediction Rate
(per 1000 instructions, not per branch)

=6% misprediction rate per branch SPECint
(19% of INT instructions are branch)

~ =2% misprediction rate per branch SPECfp
- (5% of FP instructions are branch)

7777777777777 28

Branch mispredictions per 1000 Instructions

A O &8 qf

SPECint2000

Tournament Predictor ., fam,

+ 2-bit tournament predictor
— Indexed by branch address

+ Chooses between two predictors
1. (2,2) Global Predictor
2. (1,1) Predictor w/ Local History

Branch 1 Branch 2

lter | 2,2 | 1,1 | Predictor | Predict | Action | 2,2 | 1,1 | Predictor | Predict | Action
1 NT |NT 0 T NT |NT 0 T

2 NT |NT NT NT |NT T

3 NT | T T NT | T T

4 NT |NT NT NT | T T

5 T |T T NT | T NT
Exit

Comparing Predictors (H&P Fig. 2.8)

» Advantage of tournament predictor is ability to select
the right predictor for a particular branch

— Particularly crucial for integer benchmarks.

— A typical tournament predictor will select the
global predictor almost 40% of the time for the
SPEC integer benchmarks and less than 15% of
the time for the SPEC FP benchmarks

Local 21 predictors

Gonditonal branch
misprodicton rate

Correlaing predictors

Toumament predictors

"0 @ o6 95 128 160 192 224 256 288 G20 352 384 416 448 480 512
Totalpredicor sze.
[———

Branch Target Buffers (BTB)

» Branch target calculation is costly and stalls the
instruction fetch.

BTB stores PCs the same way as caches

The PC of a branch is sent to the BTB

When a match is found the corresponding Predicted
PC is returned

If the branch was predicted taken, instruction fetch
continues at the returned predicted PC

CS252 S05

Branch Target Buffers

Number of
entries

in branch-
target
buffer

Look up Predicted PC

No: instruction is
not predicted to be
branch; proceed normally

Yes: then instruction is branch and predicted
PC should be used as the next PC

[—

Branch
predicted
taken or
untaken

Dynamic Branch Prediction Summary

Prediction becoming important part of execution
Branch History Table: 2 bits for loop accuracy

Correlation: Recently executed branches correlated with next
branch

— Either different branches (GA)
—Or different executions of same branches (PA)

Tournament predictors take insight to next level, by using
multiple predictors

—Usually one based on global information and one based
on local information, and combining them with a selector

—1In 2006, tournament predictors using = 30K bits are in
processors like the Power5 and Pentium 4

Branch Target Buffer: include branch address & prediction

eI —— 32

