
CS252 S05

CMSC 411
Computer Systems Architecture

Lecture 9
Instruction Level Parallelism 3

(Static & Dynamic Branch Prediction)

CMSC 411 - 8 (from Patterson)

Outline

• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic Scheduling
• Tomasulo Algorithm
• Conclusion

2

12%

22%

18%

11% 12%

4%
6%

9% 10%

15%

0%

5%

10%

15%

20%

25%

co
mpre

ss
eq

nto
tt

esp
re

ss
o gc

c li

do
du

c
ea

r

hy
dro

2d

mdlj
dp

su
2c

or

M
is

pr
ed

ic
tio

n
R

at
e

CMSC 411 - 8 (from Patterson)

Static Branch Prediction
• Previously scheduled code around delayed branch
• To reorder code around branches

– Need to predict branch statically during compile

• Simplest scheme is to predict a branch as taken
– Average misprediction = untaken branch frequency = 34% SPEC92

More accurate
scheme predicts
branches using profile
information collected
from earlier runs, and
modify prediction
based on last run:

More accurate
scheme predicts
branches using profile
information collected
from earlier runs, and
modify prediction
based on last run:

Integer Floating Point

H&P Figure 2.3

3 CMSC 411 - 8 (from Patterson)

Dynamic Branch Prediction

• Why does prediction work?
– Underlying algorithm has regularities
– Data that is being operated on has regularities
– Instruction sequence has redundancies that are

artifacts of way that humans/compilers think about
problems

• Is dynamic branch prediction better than static
branch prediction?

– Seems to be
– There are a small number of important branches

in programs that have dynamic behavior

4

CMSC 411 - 8 (from Patterson)

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table (BHT): table of 1-bit values

indexed by lower bits of PC address index
– Says whether or not branch taken last time
– No address check (may refer to wrong branch)

• Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 loop iterations before exit):

– End of loop, when it exits instead of looping as before
– First time through loop on next time through code,

when it predicts exit instead of looping
5

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

CMSC 411 - 8 (from Patterson)

• Solution: 2-bit prediction scheme where predictor
changes prediction only if it mispredicts twice in a row

• Red: stop, not taken

• Green: go, taken
• Adds hysteresis to decision making process

Dynamic Branch Prediction

H&P Figure 2.4

6

T

T NT

NT

Predict Taken

Predict
Not Taken

Predict Taken

Predict
Not TakenT

NT
T

NT
23

1 0

CS252 S05

CMSC 411 - 8 (from Patterson)

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when indexing

into the table
• 4096

entry
table:

18%

5%

12%
10% 9%

5%

9% 9%

0% 1%

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

eq
nto

tt

es
pre

ss
o gc

c li

sp
ice

do
du

c
sp

ice
fpp

pp

matr
ix3

00

na
sa

7

M
is

pr
ed

ic
tio

n
R

at
e

Integer Floating Point

SPEC89

H&P Figure 2.5

7 CMSC 411 - 8 (from Patterson)

Correlated Branch Prediction

• Idea – record m most recently executed branches as
taken or not taken, and use that pattern to select the
proper n-bit branch history table

• In general, (m,n) predictor means record last m
branches to select between 2m history tables, each
with n-bit counters

– Thus, old 2-bit BHT is a (0,2) predictor
– Global Branch History: m-bit shift register keeping

T/NT status of last m branches.
– Each entry in table has 2m n-bit predictors

• Also known as 2-level adaptive predictor
if (aa == 2)

aa = 0;

if (bb == 2)

bb = 0;

if (aa != bb) {

if (aa == 2)

aa = 0;

if (bb == 2)

bb = 0;

if (aa != bb) {

8

Depends on 2 previous branches!

CMSC 411 - 8 (from Patterson)

Correlating Branches

(2,2) predictor w/

– Behavior of recent
branches selects
between four
predictions of next
branch, updating just
that prediction

Branch addressBranch address

2-bits per branch predictor2-bits per branch predictor

Prediction

1 0

Or, 4 addr bits + 2 history
bits give us 6-bit index
into 26 = 64 predictors,
each having two bits �
128 total bits.

Or, 4 addr bits + 2 history
bits give us 6-bit index
into 26 = 64 predictors,
each having two bits �
128 total bits.

Global branch historyGlobal branch history

4

9

Correlated Branch Prediction

• Possible choices
– Local history + branch address
– Global branch history + branch address
– Global branch history only (no branch address)

» Ignores branch instruction

01

10110

Branch
address
Branch
address

1 0

Global
branch history

Global
branch history

Local
branch history

Local
branch history

PredictorPredictor

Index into PredictorIndex into Predictor

CMSC 411 - 8 (from Patterson)

Calculations

• 4096-entry (0,2) predictor (i.e., 2-bit BHT)
– 4k x 2 = 8k bits
– 4k = 212 � 12 address bits

• How to use the same # bits w/ a (2,2) predictor?
– 8k bits w/ 2-bit BHT means 4k BHTs
– the (2, 2) implies an entry has four BHTs
� 1k entries, i.e. a (2,2) predictor w/ 1024 entries

11 CMSC 411 - 8 (from Patterson)

ex
pr

es
so

0%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT

na
sa

7

m
at

ri
x3

00

do
du

cd

sp
ic

e

fp
pp

p

gc
c

eq
nt

ot
t li

to
m

ca
tv

1024 Entries (2,2) BHT

SPEC89

H&P Figure 2.7

12

CS252 S05

CMSC 411 - 8 (from Patterson)

Tournament Predictors

• Multilevel branch predictor
• Use n-bit saturating counter to choose between

predictors
• Usually choice is

between global
and local predictors

Predictor 1 correct.
Predictor 2 incorrect.

13

3

2

0

1

N-bit Saturating Counter

• Used to choose between predictors X & Y
• N-bit counter value between 0 and 2n-1
• Counter operations

– Increment by 1 (up to 2n-1)
» If X is correct & Y is incorrect

– Decrement by 1 (down to 0)
» If Y is correct & X is incorrect

• Choose predictor X if counter > 2n-1, Y otherwise
• Can be used as predictor (X = taken, Y = not taken)

T = taken
NT = not taken0 1 2 3

CMSC 411 - 8 (from Patterson)

Tournament Predictor : DEC Alpha 21264

• Tournament predictor using 4K 2-bit counters
indexed by local branch address. Chooses between:

• Global predictor
– 4K entries indexed by history of last 12 branches

(212 = 4K)
– Each entry is a standard 2-bit predictor

• Local predictor
– Local history table: 1K 10-bit entries recording last

10 branches, index by branch address
– The pattern of the last 10 occurrences of that

particular branch used to index table of 1K entries
with 3-bit saturating counters

15

Total size of predictor = 8K + 8K + 10K + 3K = 29K

8K

8K

10K

3K

12

(0,1) Predictor
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

NTT1TNT05

Branch 2Branch 1

01Exit loop

TT1NTT14
TT1TNT03
TT1NTT12
TNT0TNT01
ActionPredictionPredictorActionPredictionPredictorIteration

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

Prediction based on state of predictor

(0,2) Predictor
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

NTT3TNT05

Branch 2Branch 1

21Exit loop

TT3NTNT14
TT3TNT03
TNT1NTNT12
TNT0TNT01
ActionPredictionPredictorActionPredictionPredictorIteration

T

T NT

NT

Predict Taken

Predict
Not Taken

Predict Taken

Predict
Not TakenT

NT
T

NT
23

1 0

T

T NT

NT

Predict Taken

Predict
Not Taken

Predict Taken

Predict
Not TakenT

NT

T

NT
T

NT

T

NT
23

1 0
0 1 2 30 1 2 3

(0,2) Predictor w/ Saturating Counter
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

NTT3TNT05

Branch 2Branch 1

21Exit loop

TT3NTNT14
TT2TNT03
TNT1NTNT12
TNT0TNT01
ActionPredictionPredictorActionPredictionPredictorIteration

CS252 S05

(1,1) Predictor w/ Global History + Branch
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

NT? / ?T? / ?5

Branch 2Branch 1

? / ?? / ?Exit loop

T? / ?NT? / ?4
T? / ?T? / ?3
T? / ?NT? / ?2
T? / ?T? / ?1
ActionPredictionPredictorActionPredictionPredictorIteration

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

P0 / P1 � Last global branch
Not taken / Taken

Choose predictor based on last global branch action

(1,1) Predictor w/ Global History + Branch
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

NTT1 / 1TNT1 / 05

Branch 2Branch 1

1 / 01 / 1Exit loop

TT1 / 1NTT1 / 14
TT1 / 1TNT1 / 03
TNT0 / 1NTNT1 / 02
TNT0 / 0TNT0 / 01
ActionPredictionPredictorActionPredictionPredictorIteration

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

P0 / P1 � Last global branch
Not taken / Taken

(1,1) Predictor w/ Local History + Branch
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

NT? / ?T? / ?5

Branch 2Branch 1

? / ?? / ?Exit loop

T? / ?NT? / ?4
T? / ?T? / ?3
T? / ?NT? / ?2
T? / ?T? / ?1
ActionPredictionPredictorActionPredictionPredictorIteration

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

P0 / P1 � Last local branch
Not taken / Taken

Choose predictor based on last local branch action

(1,1) Predictor w/ Local History + Branch
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

NTT1 / 1TT1 / 05

Branch 2Branch 1

1 / 01 / 0Exit loop

TT1 / 1NTNT1 / 04
TT1 / 1TT1 / 03
TNT1 / 0NTNT1 / 02
TNT0 / 0TNT0 / 01
ActionPredictionPredictorActionPredictionPredictorIteration

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

P0 / P1 � Last local branch
Not taken / Taken

(2,1) Global Predictor (no Branch Addr)
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

Branch 2Branch 1

11
10
11
10
01
History

?/?/?/?
?/?/?/?
?/?/?/?
?/?/?/?
?/?/?/?
Predictor

?/?/?/?
?/?/?/?
?/?/?/?
?/?/?/?
?/?/?/?
Predictor

NTT015
10Exit

TNT114
TT013
TNT112
TT001
ActionPredictionActionPredictionHistoryIter

P0 / P1 / P2 / P3 � History = 00 / 01 / 10 / 11

History based on last 2 global branch actions; chose predictor based on history

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

Branch actions stored in Global History

Same 4
Predictors!

(2,1) Global Predictor (no Branch Addr)
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

Branch 2Branch 1

11
10
11
10
01
History

1/1/1/0
1/1/1/0
1/1/1/0
1/1/0/0
1/0/0/0
Predictor

1/1/1/0
1/1/1/0
1/1/1/1
1/1/1/0
1/1/0/0
0/0/0/0
Predictor

NTNTTT015
10Exit

TTNTT114
TNTTT013
TNTNTNT112
TNTTNT001
ActionPredictionActionPredictionHistoryIter

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

1 0
T

NTPredict
Taken

Predict
Not Taken

NTT

P0 / P1 / P2 / P3 � History = 00 / 01 / 10 / 11

CS252 S05

(2,2) Global Predictor (no Branch Addr)
• Branches in loop

B1: BNEZ … // branch 1
B2: BNEZ … // branch 2

• Branch results
B1: T,NT,T,NT,T
B2: T,T,T,T,NT

Branch 2Branch 1

11
10
11
10
01
History

1/3/3/0
1/3/1/0
1/3/1/0
1/1/0/0
1/0/0/0
Predictor

1/3/3/0
1/3/3/0
1/3/1/1
1/1/1/0
1/1/0/0
0/0/0/0
Predictor

NTNTTT015
10Exit

TNTNTNT114
TNTTNT013
TNTNTNT112
TNTTNT001
ActionPredictionActionPredictionHistoryIter

P0 / P1 / P2 / P3 � History = 00 / 01 / 10 / 11

T

T NT

NT

Predict Taken

Predict
Not Taken

Predict Taken

Predict
Not TakenT

NT
T

NT
23

1 0

T

T NT

NT

Predict Taken

Predict
Not Taken

Predict Taken

Predict
Not TakenT

NT

T

NT
T

NT

T

NT
23

1 0

Tournament Predictor
• 2-bit tournament predictor

– Indexed by branch address
• Chooses between two predictors

1. (2,2) Global Predictor
2. (1,1) Predictor w/ Local History

Branch 2Branch 1

NT
NT
NT
NT
NT
2,2

T
T
T
NT
NT
1,1

0
Predictor

T
NT
NT
NT
NT
2,2

NTTT5
Exit

TNTNT4
TTT3
TNTNT2
T0TNT1
ActionPredictPredictorActionPredict1,1Iter

Tournament Predictor
• 2-bit tournament predictor

– Indexed by branch address
• Chooses between two predictors

1. (2,2) Global Predictor
2. (1,1) Predictor w/ Local History

Branch 2Branch 1

NT
NT
NT
NT
NT
2,2

T
T
T
NT
NT
1,1

1
1
1
0
0
0

Predictor

T
NT
NT
NT
NT
2,2

NTT2TTT5
1Exit

TNT1NTNTNT4
TNT0TNTT3
TNT0NTNTNT2
TNT0TNTNT1
ActionPredictPredictorActionPredict1,1Iter

CMSC 411 - 8 (from Patterson)

Comparing Predictors (H&P Fig. 2.8)
• Advantage of tournament predictor is ability to select

the right predictor for a particular branch
– Particularly crucial for integer benchmarks.
– A typical tournament predictor will select the

global predictor almost 40% of the time for the
SPEC integer benchmarks and less than 15% of
the time for the SPEC FP benchmarks

28

CMSC 411 - 8 (from Patterson)

Pentium 4 Misprediction Rate
(per 1000 instructions, not per branch)

��

��

�

��

�

�
� � �

�

�

�

�

�

�

�

	

�

�

��

��

��

��

��

�	
��
�
��

��
��
��
�

��
	�
��
�

�

��
�
��

�

	�
��
��
��

�	

��
��
�
��
�

��
��
��
��

��
��
�
��
��

��
��
��
��
�

�
��
��
��
�

�
�
�
�
�
�
��
	

�
�
�

	�
�	
�
�

��
�
�
��
�
�
�
��
�

��
�
�
�	
�
�

SPECint2000 SPECfp2000

≈≈≈≈6% misprediction rate per branch SPECint
(19% of INT instructions are branch)

≈≈≈≈2% misprediction rate per branch SPECfp
(5% of FP instructions are branch)

29

H&P Figure 2.28

Branch Target Buffers (BTB)

• Branch target calculation is costly and stalls the
instruction fetch.

• BTB stores PCs the same way as caches
• The PC of a branch is sent to the BTB
• When a match is found the corresponding Predicted

PC is returned
• If the branch was predicted taken, instruction fetch

continues at the returned predicted PC

CMSC 411 - 8 (from Patterson) 30

CS252 S05

Branch Target Buffers

H&P Figure 2.22

CMSC 411 - 8 (from Patterson) 31 CMSC 411 - 8 (from Patterson)

Dynamic Branch Prediction Summary

• Prediction becoming important part of execution
• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated with next

branch
– Either different branches (GA)
– Or different executions of same branches (PA)

• Tournament predictors take insight to next level, by using
multiple predictors

– Usually one based on global information and one based
on local information, and combining them with a selector

– In 2006, tournament predictors using ≈ 30K bits are in
processors like the Power5 and Pentium 4

• Branch Target Buffer: include branch address & prediction
32

